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1. Stability Measures

The potentialdrawdownof U.S. and Russiannuclearforcesraisesissuesof
future “stability.” Once thesetwo powersno longer have arsenalsthat are as
dominantwhencomparedwith the restof the world asthey oncewere, how will
that affect global stability? Armchair agumentsexistin both directions,suchas

a) The U.S. and Russiawould be lessinclined to use nuclearweaponson
eachotherbecausexpendingtheir reducedarsenalcould leavethemvulnerable
to attacksfrom otherpowers(e.g.,China). Hencea stablesituationfollows if the
drawdownwere handledproperly; or

b) Coalitionscould arisethat would becomethreatsbecausea smallercom-
binednucleararsenalWwould be requiredfor themto do so, possiblyleadingto an
unstablesituation. Moreover,certaincountries(Germany,Japan,Canada)might
developtheir own nucleararsenalsf they felt that reducedU.S. nuclearforces
were no longer adequateio protectthem, while others(lsrael, India, Pakistan)
might not feel as inhibited in using nuclearweaponsto pursuetheir individual
future agendas.

To assessmatters, a formal definition of stability, togetherwith quantitative
metricsto assesshem, would be helpful.

Gametheory providesone basisfor suchanalysis. The subjecthasbeenex-
tensivelystudiedrelativeto armscontrolissuesfor sometime (seebibliography).
Though game theoretic explanationsof human/oganizationalbehavior are not
perfect,they allow for a formal expositionof the underlyingthoughtprocesses,
value systems,and so on, behind any claimed conclusions. As such, a better
understandingf the situation can evolve.

Relativeto so-called‘crisis stability” and“geopolitical stability,” gametheory
hasserioudimitationsthatarediscussedn the sectiongo follow. Basically,most
realistic arms control problemscannotbe so neatly pigeonholedas requiredby
gametheory, with eachside having nearly completeknowledgeof the other’s



motivationsand availableactions. This is why, despitethe vastliteratureon the
subject,gametheoryis not recognizedas the answerto understandindehavior.
In otherdomains,suchas“force stability,” the actionspacesandpayof matrices
havestrongerunderpinningsand stability can be examinedin somedetail.

In this report, we briefly review the existing gametheoreticliterature, dis-
cussthe strengths/weaknessed$ applying gametheory to certain arms control
environmentsandillustrate applicationwith a simple examplein force stability.
Treatmentof the stochastiaspectof the examplegoesbeyondthat foundin the
currentliteraturefor gametheoryandillustrateshow the usualconceptgdminimax
solutions,equilibrium points) must be extendedn a stochasticenvironment.

The presentations self contained,and makesno assumptiorthat the reader
is alreadyfamiliar with the subjectmatter.

2. Benefitsof Game Theoretic Modeling of Behavior

Gametheory providesa logical basisfor decisionmaking and for defining
differenttypesof stability. Oneof its earliestadvocatesinterestinglyenoughwas
prominentfor his work at Los Alamos— JohnVon Neumann.This subjecthas
beenstudieda greatlength,andis a usefulmeansof organizingthe considerations
relevantto decisionproblems.A vastliteratureexistson the methodology(seethe
bibliographyfor a samplingof relatedwork), andwe do not attempta complete
summary. Instead,basic conceptsare discussedelative to arms control issues
and, specifically, in their relation to stability.

To introducethe subjectat an introductory level, considera gametheoretic
model of the children’s game "rock-paper-scissors.The payof matrix for the
gameis listed below, wherethe first entry in eachcell is the payof to Playerl
andthesecondentryin eachcell is the payof to Player2. Eachplayercanchoose
from amongthe threeactions(Rock, Paper,or Scissors)andthe players’actions
areannouncedgimultaneously For examplejf Playerl choosefRock andPlayer
2 choosesScissorghen Player1 wins (his payof is +1) and Player2 loses(his
payof is -1). If both playerschoosethe sameaction, neitherwins (both payofs
are0). The payofs for all possiblecombinationsof actionsarelistedin the table.



Player2’s
Action:
Rock Paper Scissors
Rock 0,0 -1, +1 +1,-1
Pfé?ori;s Paper +1,-1 0,0 1, +1
Scissors -1, +1 +1,-1 0,0

If one player can outguessthe other, he wins the game. But without
knowledgeof the other player’s tendenciesthere is no formal solution to the
rock-paper-scissorgame. That is, thereis no single bestchoice of action that
offers either player an advantage.

Indeed,if oneplayerwereto adoptthe randomizedstrategyof choosingeach
possibleaction with probability 1/3, it no longer matterswhat the other player
does: the expectedpayof is O for both players. In the contextof a sequential
game,wherethe gameis repeatedmultiple times with the samepayof matrix,
independentandomizationfor eachgameoffers a guaranteegayof, at leastin
a statisticalsenseand providesonetype of a stablesolution. Namely, thatthere
is a stable,long term payof againstall opponents’strategies.

Therock-paper-scissoigamealsoillustratesthe problemwith infinite regress,
andakind of reversepsychology.Thatis, supposéllayerl “knows” thathe plans
to choose'Paper’ If Player2 knowsthatPlayerl knowshe’s planningto choose
“Paper; thenPlayer2 will choose*Scissors.”But if Playerl knowsthat Player
2 knowsthat Playerl knowshe’s planningto choose‘Paper,” thenPlayer1 will
counterPlayer2’s anticipated‘Scissors”actionby choosing“‘Rock.” However,if
Player2 knowsthatPlayerl knowsthatPlayer2 knowsthatPlayerl knows. . . .
This is a classicillustration of infinite regresswhereeachplayercanrationalize,
adinfinitum, aboutthe beststrategyagainstan opponenthavingsomeintelligence
regardinghis plannedactivities. The infinite regresssituationis unstablein some
sense.

Considera gamewhere anothertype of stable solution exists. The payof
matrix for this gameis:



Player2’s
Action:
Low Medium High
Low +2, -2 -1, +1 +3, -3
Playerl’s Medium +1,-1 0,0 +1,-1
Action:
High -3, +3 -1, +1 -2,+2

The combinationof actionswhereeachplayerchooses’Medium” is known asa
Nashequilibrium. In distinct contrasto the rock-paper-scissorgame knowledge
that the opponentwill choose*Medium” offers neitherplayerthe opportunityto
gain by changinghis own action away from “Medium.” The Nash equilibrium
reflectsa regionof the payof spacewhereneithersideis motivatedto unilaterally
changeits behavior, and thus the equilibrium point constitutesone notion of
stability.

The two payof matricesaboveare examplesof zero-sumgameswherethe
sumof payofs to Playerl andPlayer2 alwaysaddto zero. Thatis, eachplayer
cangainonly at the expenseof the other. In certainbi-polar settings,suchasan
oversimplifiedview of the cold war, this type of payof matrix may be plausible.
In most environments however,the partiesinvolved have mutual interestsand
the zero sum phenomenons not realistic.

A third game frequentlydiscussedh the contextof armscontrol,is the classic
prisoner’sdilemma. This is not a zero sum game. Backgroundfor one version
of the prisoner’'sdilemmais asfollows. The two playersrepresentapprehended
criminals,imprisonedin separatgail cells following the commissionof a crime.
The district attorney,knowing the evidenceagainstthemis too weakto obtaina
stiff sentenceapproacheshe prisonersindividually to offer eacha pleabagain.
Possibleoutcomesare:

» If oneprisonerConfessesandthe otherStonewallsthe confessomwill receive
probationwithout jail time, his evidencebeingusedto obtaina stiff sentence
for the stonewaller.

* If both prisonersStonewall,both will receivelight jail sentencebecauseof
the limited evidenceagainstthem.



» If bothConfesspothwill getmediumsentenceg¢receivingsomeleniencyfor
sparingthe district attorneythe ordealof a taking the caseto trial).

An exampleof a payof matrix for the prisoner’sdilemmagameis asfollows:

Player2’s Action:
Confess Stonewall
Playerl’s Action Confess -10,-10 0, -20
Stonewall -20,0 -3,-3

One solutionto the prisoner’sdilemmainvolves a Nash equilibrium. Player1,
thinking selfishly,knowsthat no matterwhich actionis takenby the otherplayer,
it's to his benefitto confess.Player2, alsoreasoningselfishly,confessesswell,
leaving both playerswith a payof of -10. The solutionis stablein the Nash
sense,in that neither player, knowing that the other will confess,can gain by
unilaterally changinghis own action.

Although the “Confess-Confess”solution is optimal in the selfish sense
describedabove, it leadsto a foolish result collectively. Both players would
be betteroff with the “Stonewall-Stonewall”solutionthanwith the (supposedly)
sefishly optimal “Confess-Confess’solution, if only they could cooperatively
achieveit. If they could somehowenterinto a binding agreemento Stonewall,
eachplayer could achievea good resolution,without fear that the other player
would exploit that action for personalgain.

In thegamesabove thereis no (formal) stochasticomponent.Otherthanthe
considerationof so-calledmixed strategiessuchas randomly choosingeach of
rock-paper-scissosgith probability 1/3in orderto guarante@ minimumstatistical
payof, otheraspectof the gameare deterministic. Thereare certainothertypes
of gameshaving stochasticcomponentsa few of which arereviewedhere.

Perhapghe simplestsuchgameis the “noisy duel.” Thatis, two combatants,
eachhaving a gun containinga single bullet, squareoff in a duel. Initially, the
combatantsredistanceD apart,andthey slowly walk towardseachother. When
combatant (i = 1, 2) fires his weapon,his probability of killing his opponent
is pi(d), whered denotesthe distancefrom his opponentat the time his gun is
fired. If onecombatanfiresandmisseshowever,his opponents certainto walk
up to him andkill him.



Thenoisyduelgame then,reducedo eachcombatantlecidingwhento shoot.
If someoneshootstoo soon,andwith too low a probability, he may missandlose
the game. On the other hand,if he waits too long, his opponentmay kill him
first. In termsof striking the right balance the optimal solution dependson the
respectivepayofs of the players(aside:for payofs of £1, the solutionis for each
player to fire assoonas pi(d)+ po(d) = 1).

Still other gamesdependon somewhatunpredictablepsychologicalfactors.
Considera one-dimensionagame of hide-and-seek.The first player picks an
integerbetweenl and N, andthe secondplayer is to guessrepeatedlyuntil he
correctlyidentifiesthatinteger. Upon eachincorrectguessthe secondplayeris
told whetherhis mostrecentguesss high, low, or correct. Usingthatinformation,
he continuesguessinguntil he guessesorrectly. The first player would like to
maximizethe numberof guesseseededwhile the secondwvould like to minimize
the number.

An extensiorof this gameis to introduceadditionalinformation— the players
may know eachotherand believethat they can anticipate(howeverimperfectly)
the other’'saction. Thatinformationcanthenbe usedin determininga sequential
(and possibly mixed) strategy.

Still othergamesexist, involving morethan?2 players,for example.As noted
above,the purposeof this reportis not to exhaustivelyreview the considerable
literatureon the subject. Instead.,it is to conveybasicideasfrom gametheoryto
provide a normativetheoryfor decisionmakinganddifferentnotionsof stability.
Becausalll availableactionsfor all playersaredetailed the assumptionsegarding
the resultingoutcomesare quantitativelydescribedand the basisfor selectinga
strategyis opento examinationby others. The structuresuppliedallows for the
gameto be objectivelyexaminedor optimal strategiesandfor evaluatingvarious
notionsof stability. This is the greateststrengthof the approach.

3. Recognized Limitations of Game Theoretic
Modeling of Arms Control Behavior

The above (oversimplified)examplesof two-persongameswere introduced
for purposesof illustrating some basic points and different notions of stability.
Note that theseexamplesinvolved severalground rules which warrant further



discussion. One perspectiveon theseshortcomingsis that they identify areas
where gametheoreticresearchwould be useful in aiding study of arms control
applications. Given the concertedeffort to apply gametheory to international
stability (seethe bibliographyfor a samplingof the literature),if currentmethods
were adequateo addresghe situation,the problemwould have beensolvedby
now.

Gametheoreticshortcomingsnclude the following.

3.1 Action spaces are assumed known to all players.

Specificationof the payof matrix defining the gameinvolves a complete
enumeratiorof all possibleactionsthat all playersare allowedto take. In many
realistic decision problems,options are not so well delineated. An action can
involve many distinct sub-actionswhich in turn involve sub-sub-actionsand so
on. At somelevel of detail, a completecharacterizatiorof the action spaceis
impossible,and only low-resolutionapproximationscan be considered.ldeally,
the summaryincorporatesall relevantconsiderationsand is reasonabldo first
order, thoughthereis rarely a way to verify this assumption.

History is littered with exampleswhere imperfect military intelligenceled
to instancesvhere countrieshave miscalculatedhe response®f other countries
to their actions. Historical examplesexist where adversariefhiave overestimated
andunderestimate@achothers’ capabilities,and were surprisedto seethat their
opponentsvere capableof taking the actionsthey did.

Peopleact on a combinationof beliefs, someof which may be correctand
othersnot. In a relatedissue,information on which they baseactionscan be
timely or outdated. Becauseof this aspectof uncertainty, decisionmakingis
lesslike a well definedtwo-persongamehaving a deterministicpayof matrix
and more like a gameof poker, where bluffing is an acceptedand sometimes
successfulstrategy. Although simple typesof bluffing canbe incorporatednto
action spacesthe more generalcasecannotbe.

3.2 The payoffs to each player of all possible combinations of actions are
deterministic and are known to all players.

3.2.1 Amalgamation and Stochastic Payoffs

Exceptin isolateddictatorships,governmentaldecisionsare not truly made
by a singleindividual. Policy decisionsmusttakeinto accountnumerousconsid-



erations(e.g., political, economic,military, personalagendaspnd differencesof
opinions may exist regardingthe tradeofs involved. Thus, behavioris affected
whencountriesdon’t behavethe way thatindividual peopledo. Justlook at U.S.
governmenpurchasingules,for example,n contrastto the way thatindividuals
make personalbuying decisions. Another exampleis that smaller organizations
sometimesoptimizetheir own interestsat the costto their larger organization.In
the extreme,horsesare designedby committee.

The multiple considerationsre rolled into a single payof valuein orderto
force fit the probleminto a gametheoreticsetting. In so doing, measurement
units may be difficult to assessndthenreconcile,suchasa nationevaluatingthe
tradeofs betweeneconomicbenefitsto its society vis-a-vis devoting substantial
nationalresourceso maintaininga vastmilitary machine.In extremecasesissues
becomevery problematic(e.g.,how manydollarsis a humanlife worth?). There
is a literature on multi-attribute utility analysis(e.g., Keeneyand Raiffa 1993;
Krakowski 1996) which attemptsto addresghis problemby assigninga “grand
utility” to eachoutcome.But summarizingsuccinctly,“avoiding weaselwording,
it boils down to the unhappyconclusionthat thereis no universalsatisfactory
way to amalgamatehe individual preferencesnto group preferences’(Shubik,
p. 100).

The issue of amalgamationaside, many decisionmakingsituationsinvolve
payofs that are not known with certainty. In war gamesand military simulation
models,for example stochastielementsareintrinsic to thegame. If adecisionis
madeto attack,for example the outcomeis not knownwith certainty. Moreover,
subjectiveperceptionsanbedifficult to quantify,especiallyin regardto assigning
risk to low-probability, high-consequencevents(suchasnuclearexchangesand
issueswith high emotionalcontent(for example,nuclearpower), and there is
someevidence(Fischof, Slovic, andLichtenstein1982)to suggesthatpresumed
expertsin an areaare often no better than the generalpublic in making such
assessments.Cultural differencesare also importantin this regard (Whitman
1985). As such, different peoplecan reactto the samesituation differently and
the subjectof risk perceptionbecomesmportant.

At a minimum, efforts to determinethe sensitivity of the optimal strategyto
perturbationsof the payof matrix are essentiapartsof any analysis.

Not only is assessinghe payofs to one’sown sideill-defined, but assessing
the payofs to othersintroducesstill more complications. Imperfectintelligence



may existregardingoptionsavailableto the otherside(s),aswell asthe effective-
nessof thoseoptionsif implemented.Indeed,oneaspecbf thecounterintelligence
involvesfeedingmisinformationto adversariesMoreover,the motivationsof ad-
versariesaswell asthe value systemghat drive their motivations,arefrequently
difficult to determinefrom a distance.The Cubanmissilecrisisis a classicalcase
in point, where Americandecisionmakerspentconsiderablgime (e.g., Allison
1971) trying to understanchow the situationwas being perceivedby the other
side. A subjectivistapproachto the problem,formalizing subjectiveuncertainty
throughthe useof probability distributions,leadsto stochasticpayofs in much
the sameway as doesmodelinguncertaintyin military attacks.

When the payof matrix is stochastic,the usual game-theoretimotions of
stability, suchas minimax solutionsand Nashequilibria, no longerexistin their
pure form. For example,with certain stochasticmodels such as the normal
distribution, there is no guaranteedninimum payof. Minimums only exist in
a probabilisticsense(e.g., “with probability 90%, the payof is at leastx.”). At
this point, utility functionscanbecomemportant,andthe notion of risk aversion
affectsthe definition of “optimal” strategiesUse of expectedsalues(Bookerand
Bryson 1985) is sometimegeasonableand sometimesot. Possiblyas a result
of thesefactors,thereis little literatureon the subjectof stochastigpayofs.

3.2.2 Knowedge Management

Much knowledge,or “know how’ or expertinsight, is not (fully) quantita-
tive but still importantfor understandingind evaluatingstability. In Section3.2,
the lack of knowledgeby the playersinvolved was noted as a shortcomingof
the gametheoreticapproach.With modernday computationand communication
capabilities,knowledgeand other forms of factual information, including obser-
vationalandcollecteddata,canbe gathereddocumentedstoredandretrievedfor
analysiswith greater,ease.

Knowledgemanagemeris a burgeoningtechnology(seeKnowledgeTransfer
International1999). Its methodssupportthe processof organizing,transferring,
and using the heterogeneousformation and expertiseof groupsof peopleen-
gagedin anactivity (suchasoperatinga military force). KnowledgeManagement
is commonly usedto preserveand leverageknowledge,efficiently link seekers
to information so that they can make informed decisions,enablediverseor dis-
persedgroupsto work towardsa commonpurpose. Knowledge Management
includesthe elicitation and documentatiorof the knowledgeof experts(knowl-



edgeacquisition),the creationof electronicrepositoriessuchasknowledgebases
or organizationalmemories,and use of tools for electroniccollaboration,data
searchingwarehousingmining, and discovery.

Perhapsvith betterknowledgemanagemengjametheoryandthesealternative
theoriescanimplementedo overcomethe weaknes®f gametheoryin addressing
certain decision problems.

3.3 Players behave rationally relative to their respective payoffs.

Someaspectof definingrationalbehaviorhavebeendiscusse@bove.Issues
of individual (selfish)rationality asopposedo collectiverationality, suchaswas
discusseavith respecto the prisoner’sdilemma,or to amalgamatingnanydistinct
points of view in a single payof matrix, makeit difficult to examinerationality.
But even at the level of an individual person,rational behavioris difficult to
address.

Unlessrationality is circularly defined(i.e., whateveraction was taken must
haveoptimizedthe relevantutility function at the time), peoplefrequentlydon’t
behaverationally. Either that, or they behavelogically with respectto a value
systemthat is so poorly understood(by their adversariesf not by themselves)
that gametheoreticmodelingis highly problematic.

Irrational behaviormay follow from (Meyer and Booker, 1991)

* Failure to updatetheir beliefs in light of new information that becomes
availableto them— e.g., beliefs can changeslowly in spite of large amounts
of contrary evidence.

* Acting on perceptionghat are in fact false.

* Acting on personalagendas.

» Poorestimationof frequenciesof events,especiallyrare ones.

* Poorunderstandingf interdependencielsetweenevents.

* Underestimatiorof uncertainty— e.g., placing excessiveconfidencein their
own beliefsor in the beliefs of (supposedkxperts.

* Justplain stupidity.

Egoscanalsoplay a role. Shubik (1975),for example,presentedx study where
peopleturneddownmoneyonly becauseheyfelt slightedby the processn which
it was offered. Substantialperson-to-personariability was also presentin that
study, illustrating that it is dangeroudo generalizehow one personwill react
given information on how othersreactedunderthe samecircumstances.
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Attemptshavebeenmade(e.g.,ZagareandKilgour 1995,Giles, et. al. 1994)
to assignpsychologicallabelsto differenttypesof playersandview payofs for
eachin thatlight. This allowsfor characterizinglifferentdegreeof risk aversion
versugisk taking, differentpainthresholdge.g.,thewillingnessto absorbdamage
in orderto inflict damage,importantin military exchangesimulations),and so
on. Sucha view providesfor flexibility in capturingindividualistic tendencies,
although this flexibility comesat the cost of a well defined game when the
tendenciesf an adversaryare unknown.

An alternativeview, asstatedby Weber(1991,p. 68), is that“Decisionmakers
here do not deal in utility functions. Instead,they deal in amguments.” By
implication, force fitting decisionproblemsinto a gametheoreticframeworkis
il advised.

3.4 Players have sufficient time to search the solution spaceand arrive at an
optimal solution.

An aspecbf decisionmakinghatis poorly capturedoy gametheoryinvolves
the costof searchinghe solutionspacdor anoptimalresult. As asimpleexample,
considera personmaking a purchasingdecision. The persongoesto a store,
examinegelevantitems,andhasthe choiceto buy an item that's availableat the
price given, or to continuethe searchat anotherstorein the hope of obtaining
a morefavorabledeal. If the searchcontinuesthe samebuy-or-continue-to-look
decisionis againfacedat the next store.

In this example,thereis an implicit cost-benst tradeof of continuingthe
searchor a betterdealthanhasbeenavailablethusfar (which involvescontinued
investmenbf effort on behalfof the person)yersusstoppingthe searchandbuying
at a particularpoint in time. For major purchasingdecisions(suchas a houseor
automobile) a continuedsearchmaybeworthwhile,whereadgor minor purchasing
decisions(such as a groceryitem), it may be more cost effective to purchase
immediatelyevenif it is likely that a betterdeal could be found elsewhere.An
assessmerdf the unknown— i.e., doesa betterdealthanobservedhusfar even
exist? — becomesa subjectiveelementof the decision.

For internationalevents,time pressure®ften exist. The old adage*he who
hesitateds lost” may apply, but the tradeofs in the continuedponderingof the
action spaceare lesswell defined. Actions to “buy time” may be taken,but in
many cases(e.g., the Cubanmissile crisis) it is not possibleto think through
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the decisionfor aslong asmay be desired. At somepoint, it may be necessary
to knowingly proceedwith a suboptimalsolutionratherthanspendingadditional
time making minor improvementso it.

The effects of time pressureon decisionsand the subsequenstability of a
situationarepotentiallyimportantbut poorly understood As hasbeennoted(e.g.,
Shubik1975)it is not realisticto conductcontrolledexperimenton this subject.

3.5 One-Time Payoffs.

In internationalrelations,the “players” (nations,if not their specificleaders)
involved havealong history of interactingwith eachother. The“game”is lessof
a one-timeevent,and more of an ongoingseriesof eventswith a corresponding
seriesof payofs. Circumstancesnd payofs changeovertime.

To besure,aliteratureexistson sequentiajamespusuallyassuminga constant
payof matrix. Thiswasmentionedn the spirit of playingthe rock-paper-scissors
gamemultiple times. Anotherexampleis the so-calleddifferential game(Isaacs
1965),which involves*“lengthy sequences. of decisionswhich areknit together
logically sothat a perceptibleand calculablepatternprevailsthroughout.”Often,
the conditionsfacing the playersevolve accordingto a differential or difference
equation,which gives the class of gamesits name. Examplesof differential
gamesare gamesof pursuit, in which one player chasesanotherplayer across
somedomain, while the latter player attemptsto avoid capturefor aslong as
possible.The playersreceiveperiodicinformationasto the whereabout®f each
other,andthe payof is dependenbn the numberof stepsrequiredfor the capture
to occur (in manygamescaptureis certainif the gameis playedlong enough).

In manyarmscontrol environmentsa complicationis that the payof matrix
changesover time. As an example,the ABM treaty succeededn the 1970s
because¢he U.S.and(then)SovietUnion felt it wasin their mutualinterest. With
the future prospectf otherpowerssuchasChinaandNorth Koreabeingableto
strike with similar missiles,peopleare now rethinkingthe matter. As technology
evolvesandis redistributedacrossthe world, circumstanceshange.

Suchevolving situationscan be modeledby examiningmultiple payof ma-
trices (i.e., a matrix for eachtime point of interest)or by assigningintegrated
(overtime) payofs for a singlegame. Anotheralternativeis to usetreestructures
(e.g., Zagareand Kilgour 1995), but the efficacy of such structuresis limited.
In practice,the longer the scenario,the harderit is to anticipatean adversary.
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Similar to a chessgame,it becomegrogressivelymore difficult to anticipatean
opponent’sactionsl, 2, 3, . . . movesinto the future. Many factorsaffecting the
rate of changein the action spaceare not directly observable(e.g., if a nation
decidesto developnuclearweaponsto allow it to have more flexibility in its
actions,how much time is requiredfor it to do so?). And the fact that many
decisionsnvolve multiple players(e.g.,how do one nation’sactionsevolve from
changesn anothernation’s actions?) only makesthe time-dependentodeling
of payofs/actionsmore problematic.

3.6 Alternatives to Standard Quantitative Payoffs

Becauseof the shortcomingscited abovein using standardgametheory and
guantitative payofs, alternativeshave beenpursuedin the literature that offer
potentialfor capturingthe human-basedssuesinvolved. Zadeh(1965) provides
an alternativeview of uncertaintyby defining the conceptof fuzzy logic, based
on fuzzy settheory. In conventionallogic and set theory (called crisp), each
memberof a populationis assignedexactly to a set. For example,an F-16 is
a military jet. In fuzzy logic, however,the membershipassignmeninay have
uncertaintyattachedand becomeinsteada “fuzzy” set. For example,an F-16
may belongto the setof fighterjets with membershi®.90, alsobelongto the set
of bombingaircraftwith membershif.6 andto the setof reconnaissanceehicles
with membershi.5. The uncertaintyin definingsetmembershigs represented
by numericalvaluessuch as these. Unlike probabilities,thereis no restriction
for membershipgo sum to one.

Fuzzy control systemmethodshave beendevelopedfor analyzingcomplex
systemsand problemswhere the physical model or underlying processesare
not known and where the input and output uncertaintiesmay only be known
in termsof languageinformation (e.g., “nominal,” “good,” “bad,” “poor,” etc.)
(Ross 1995). Relationshipsbetweenoutputs and inputs of a complex system
are specifiedaccordingto setsof rules and conditions. The rules, inputs and
outputs accommodateuncertaintiesin information by using natural language
terms, making it convenientfor use by the expertsproviding information. In
first strike stability, for example the inputsand outputswould be the strikesand
their results (tamgets killed), and the rules would be constructeddescribingthe
engagements.Fuzzy methodswould provide the mechanismdo representthe
many uncertaintiesnvolved in theseinputs, outputsandrules.
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Many decisionproblemscontainmuch uncertaintyin their structureand in
the information available. They can be addressedising fuzzy cognitive maps
(Kosko 1997). Fuzzy cognitive mapsare a meansof explainingpolitical decision
making processeshy combining the use of neural networks and fuzzy logic.
Variable conceptsare representedy nodesin a directedgraph. The value at
the noderepresentshe degreein which that conceptis active in the systemat
a giventime. Qualitativesimulationpermitsexperimentatiorwithin the complex
problem. Suchanalysesare doneprior to gatheringinformation (often expensive
to obtain)for a morequantitativemodel. A detailedexamplemodelingthe onflict
in Kosovo is found in Taylor (1999).

Wth the expandeduseof fuzzy logic and settheory, otherinterpretationsof
uncertaintyhaveemeped that differ from the foundationsof probability theory.
Zadeh(1996) proposedoossibility theory. This theory providesmethodologyfor
addressinguchquestionsas: how likely is it that Chinahasstrategicmissilesof a
certaintype, or how largeis the Chinesemilitary force? Its axiomsandproperties
are similar to probability, but they operateon the “possibility” and "plausibility”
of eventsoften in language(non-numeric)termsand are basedon the concepts
in fuzzy set theory.

Economists,engineersand computerscientistshave applied thesetheories
to problemsin soft computing(Dubrois and Prade1988), humancognition and
knowledgemanagementWhile thesetheorieshavetheir axiomsandprinciplesof
operation,suchascoherencetheyarebroadenoughto handlethe large uncertain-
tiesinherentin humanknowledgeandinformation. And theyaredesignedo more
closelyrepresenthe cognitive processesvhich, too often, appearasirrational be-
haviorandinconsistenciesvhenattemptingto apply gameandprobability theory.

3.7 What is Stability?

Severalgametheoreticnotionsof stability havebeenmentionedabovein the
context of the standardtwo-persongame, ranging from actionsthat guarantee
(statistically)a given payof, saddlepoinsolutionsthat defineNashequilibria for
all individual playersinvolved, and negotiatedagreementghat optimize some
collective measureof joint benefit. Suchnotions have the benefitthat stability
is well definedin eachcase. As noted, however,none of thesenotions seems
especiallyapplicableto crisis stability or geopolitical stability.

Loosely speaking stability measuresnvolve many considerationge.g., eco-
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nomic, political andmilitary), manyplayers(asituationthat’s stablefor oneplayer
may not be stablefor another).andshouldbe capableof adaptingto change®ver
time (a situationthat’s stabletoday may not be stabletomorrow). All of which
raisesthe question: what is a stability measure?In other words, if a function
s(x) of specifiedvariablesx were given, would we know if that function were a
“stability measure”or not? And if so, how would we know it? The situationis
very differentfrom benchscience whereit’s often possibleto conductphysical
experimentwhich can,to somedegree confirm a hypothesisr validatea model.

From a historical standpointpeoplehavemusedover stability for years. The
subjecthas beenof greatinterestsincethe 1960s,with much written aboutit,
but therehaven'tbeenany widely acceptedesolutionsto the problem. Although
“The nuclearworld is full of multiple equilibria; thereis morethan one solution
to the problemof deterrenceandstability” (Weber1991,p. 304),no oneappears
to haveyet found a stability measureo fully captureany of them.

4. Force Stability: An Example
4.1 Background

We now considera specific problemwhere a gametheoreticformulationis
helpfulin assessingtability. Thatprobleminvolvessimulatednuclearexchanges.
Force stability appliesto a situationwhen two or more countrieshavereached
an extremecrisis in which eachbelievesthe other may launchan attack. The
situationis stableif the incentivefor a countryto strike first, ratherthanto plan
to retaliateto the adversary’sattack, is relatively weak. For this reason,force
stability is also known as first strike stability. Unlike many stability settings,
suchasgeopoliticalstability, the actionspacefor force stability problemsis well
definedandthereis a solid basisfor the expectegayofs andstochastianodeling.

In the moststablesituation,it is possiblefor eachsideto inflict unacceptable
damageuponretaliatingagainsta first strike, so that neithersideis motivatedto
initiate an exchangetherebyallowing the crisis to be resolvedby other means.
While force stability can be misleadingwheninterpretedin a vacuum(between
friendly countries,for example,who wouldn’t attack each other evenif their
forceswereof disparatemilitary strength),it may haveconsiderableelevanceo
future armsreductionagreements.
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The computer simulation for nuclear exchangespostulatesa war having
multiple engagementsthe term “multiple engagementsimeaningthat several
attacksare to take place sequentially. Each side knows of the other’'s weapons
arsenalsand so-calledvalue assetqtargets such as cities and industrial centers,
which poseno immediatemilitary threatbut which areimportantto destroy). A
scenariois specfied, whereone country strikesanother the otherthenretaliates
(concludingthefirst engagementiandthis is followed by additionalengagements
betweenthe sameor othercountries.Obviously, eachside wantsto optimizeits
targeting, so asto do the most damageto its enemieswhile incurring minimal
damageto itself. Combinatorically, the number of weapon-taget strategies
imbeddedwithin the multiple engagementss finite, but too large for exhaustive
calculation. Thus, optimizationalgorithmsare necessary.

This modelingof warfareis not 100%accuratejn thatintelligenceregarding
the other side’s arsenalsand weaponsperformances not perfect. Moreover,in
real wars, eachside doesnot wait patiently for the other side to finish its attack
before responding. Nonethelessmuch can be learnedby examiningstrike and
counterstrikestrategieover a wide rangeof casege.g.,a casewith the U.S. and
Russiaand at their currentarsenalsanotherwith their projectedarsenalsunder
START agreementsand others relatedto so-called breakoutscenarioswhere
one side clandestinelydevelopsweaponsbeyond those allowed by negotiated
agreements).

The military simulationgroup at Los Alamos hasdevelopedhe MESA/SM
code(Multiple Engagementsvolving StrategicArsenals with Stability Metrics)
for simulatingmulti-polar military exchangegAnsonand Stein1999). It hasthe
capabilityto optimizeoverrepeatecdngagementsivolving multiple parties,albeit
under deterministicconditions. Becauseof the detailedresolutionof the code,
producingstrategiesat the weapon/taget level, considerableealismis achieved.

4.2 Stability Measures

Probablythe mostcommonlyusedmeasuresf force stability areKent-Thaler
indices (Kent and Thaler 1989). Kent-Thaleranalysis,in the bi-polar scenario
with a single engagementgalculates‘costs’ to eachadversaryin the eventthat
they strike first andin the eventthat they are struckfirst andlauncha retaliatory
strike (eachsideis assumedo launchonly once). Eachside’stargetsare divided
into two categories:weapontargetsand value assetsandit is assumedhat the
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retaliatorystrike attacksonly valueassetastherewill beno furtherengagements.
It is also assumedhat eachside makesuseof all its weaponsso that the only
optimizationnecessarys the first striker’'s decisionof what fraction of weapons
to aim at value assets.

Often, the two sidesareassumedo haveonly onetype of warheadalthough
this assumptions not critical. The amountof damagedoneby a given numberof
weaponss assumedo be deterministic,althoughtypically attackersexperience
diminishing returns as they launch more weapons. A traditional cost function
is then

Cs = fs + Ml—fo)

where (s denotesthe costto one’s self, f¢ denotesthe fraction of one’s own
value assetsdestroyed,fp denotesthe fraction of the opponent’svalue assets
destroyedand ) is a constant(often takento be roughly 0.3). The minimum of
(s occurs,obviously,at zero,wherea countrylosesnoneof its valueassetsvhile
destroyingall the assetsf its opponent(s).The optimal first strike strategyis a
combinationof attackingan opponent’sveapong(i.e., onewarheadcould destroy
an opponent’splatform, therebypreventingall of that platform’s warhead$rom
destroyingone’s own value assets)as well as attackingthe opponent’svalue
assetsdirectly.

The costC's is computedfor the two choicesof "self' andthe two possible
first strikers, and then a stability index is

CS(lal) % CS(2a2)
CS(172) CS(Qal)
where Cs(z, ) denotesthe costto countryi when countryj strikesfirst. Low

valuesof this index indicate that at leastone of the countriesmay believethat
they cannotafford to risk a first strike by the other.

Nyland (1998)modifiesthis analysisslightly, by assuminghatthefirst striker
attacksveaponsipto the“point of diminishingreturns”in the curveof opponent’s
warheadssurviving as a function of one’s own warheadslaunchedat weapon
targets. Nyland calculatesstability indices using the numberof warheadsthe
seconastriker hasavailableto launch. Anotherconceptof stability, closestto the
Mutually AssuredDestructiondoctrine,considerghe situationstableif eachside
is assuredf inflicting unacceptablelamagen retaliationagainsta first strike.

As is apparentsuchstability metricsare poorly suitedto the stochastimature
of the problem. If, for example awarhead-tagetcombinationis associatedvith a
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kill probability p;, the damaganflicted by the warheads stochastic.Thatis, the
costto eachside of an exchangdasn’'t known (exactly) in advance.Substituting
statisticalaveragedor the Cs(z,7) canlead to misleadingnotions of stability,
as we show later.

4.3 Simulated Nuclear Exchanges
4.3.1 Input Data

Extensiveinput files are neededto characterizehe exchange.Eachside’s
arsenalmust be detailed, in terms of the number of platforms, missiles per
platform,andwarheadpermissile. Valueassetsnustalsobe described Weapons
platforms as well as value assetsare legitimate targets, the former in order to
preempta counterstrikeandthe latter to cripple the enemy’sinfrastructure.

For eachweapon/taget combination,thereis a “damageexpectancy (DE).
The DE is a numberbetween0 and 1 which correspondgo the kill probability
that a weapon’swarheadwill destroyits target. In exchangesith highly lethal
weapons,the notion of an all-or-nothing target “kill” representsa reasonable
modeling, in that partial damageis not a likely outcome. For warheadsthat
behaveindependentlyjf w warheadsare fired at a single target, the chancethat
all of themwill missis (1-DE)Y, and thus the probability that the target will
be destroyedn the attackis 1 - (1-DE)Y. Upon combiningall suchresults,the
possibleoutcomesof a first strike are numerous;and, becausesachsubsequent
engagemerdepend®ntheoutcomeof its predecessog wide variety of outcomes
for a multiple engagemenscenariois possible.

For optimization,a linearizedversionof the aboveexpectations usefulandis
incorporatednto the currentversionof the MESA/SM code. We will referto this
assumptioras the deterministicwarheadassumption.That is, supposethat each
warheadired deterministicallykills a fraction DE of its target. This interpretation
can be computationallyconvenient,making determinationof launch strategies
possibleby solving a linear programmingproblemwith constraintgatherthanby
using more time consuminginteger routines.

The deterministicwarheadassumptionis reasonablyaccuratefor high DE
values,say, DE = 0.9, when thereis an addedconstraintthat damagemay not
exceedthat which is physically possible(e.g., firing two warheadswith DE =
0.9 at a single target doesonly one unit worth of damagenot 1.8 units worth).
For smaller DE values, a nonnegligiblebias is introducedby this assumption.
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Supposefor example that an attackerhasten warheadseachwith DE = 0.5, to

launchat 5 targets. The deterministicwarheadassumptiorleadsto firing w = 2

warheadst eachtargetandassuminghatall targetswill bekilled. Stochastically,
however the chanceof killing all 5 tamgetsis [1 - (1-DE)?]°, hereequalto 24%. It

is clearthatthe deterministicallyexpecteddamagds biasedrelativeto the actual
expecteddamagen sucha way that the attackerbelievesthat the attackwill be

more successfuthan usually is the case.

Still otherissuesarisewhenthe stochasticmatureof the exchangeds consid-
ered. An exampleto illustrate the point: supposethereexistsa single platform
having 10 warheadsandit’s fired on with DE = 0.8. Then, 80% of the time,
the platform and its 10 warheadsare destroyedwhile 20% of the time, all 10
warheadsemain. Basinga counterstrikeon expectedvaluesassumesghat there
are 2 warheadsemainingfor retaliation, representinga statisticalaveragewith
respectto the damageexpectancyDE = 0.8. Of course,thereare NEVER two
warheadsemaining,andany plannedretaliationusing2 warheadsnay look very
different than either actual counterstrike with 0 or 10 warheads. Moreover, it
is clear that substantialvariability is introducedby the all-or-nothing attack on
MIRVed tamgets,in thatkilling the targetsoffers substantiabenefitto the attack-
ing side,while not killing themcreateghe potentialfor muchdamageo be done
upon retaliation.

In somedomains,with single-warheaglatforms,large numbersof weapons
on both sides, and uniformly high DE values, deterministic expectedvalue
calculationsareoftenreasonablyloseto their stochasticounterpartsWith fewer
weaponsand greaterMIRVing, asin the aboveexample,the disparity between
expectedvalue assumptionsand stochasticones become greater. When the
cascadingeffect is addedtherecanbe considerablalifferencebetweenstochastic
and expectedvalue results.

Cascadings thetermthatdescribeghe collective effectsof eachengagement
on the subsequeneéngagement(s)if, in the first engagementpnesideis “lucky”
(i.e., it emepgeswith lessdamagethanwas expected)and the otheris unlucky,
the formeris positionedfor greatersuccessn subsequenéngagementsyhile the
latter is likely to incur greaterdamagethan otherwise. The bottom-line effect of
cascadingcan be large variability in costsfor multi-engagemenscenarios.

Forall theabovereasongoptimisticbiasin deterministicassumptiongherole
of damageassessmerih planning,MIRVing of tamgets,andcascading)stochastic
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modelinghasmajor implicationsfor determiningoptimal strategiesand thusfor
first strike stability.

4.3.2 Optimal Stochastic Strategy

The lack of perfect predictability has an effect on defining optimality. In
whatfollows, optimal strategiesare definedin termsof expectedvaluesfor each
strike; that is, the best strategy, by ddfinition, gives the best expectedvalue
responsdor the exchange. This is consistentwith most current treatmentsof
force stability. For completenesdhowever,it is notedthat other strategiesexist.
As one example,if one side hasa military advantageandis risk averse,t may
want to minimize the probability of a negative outcome, even at the cost of
reducingits expectedmnaigin of victory (similar to a sportsteamadoptinga very
conservativestrategywhenit hasthe leadin a game). Conversely,an underdog
may chooseo maximizeits probability of a positiveoutcomeevenif the expected
mamin of defeatbecomedarger(again,thereareobviousexamplegrom theworld
of sports). Such stochastic-basedotions of stability have not been seriously
examinedin the force stability literature.

Conflictsbeginwith a setof goalsfor eachcountry. Thesegoalsare of the
form: in the eventof a nuclearexchangewith a certaincountry, it is desiredto
destroysome portion of that country’s weaponsand some portion of its value
assets.Goals may be stratified, in the sensethat sometypes of weapons/assets
may havedifferent priorities associatedvith their destruction.In principle these
goals can model such conceptsas countries’ pain thresholds: they will tamget
higher portions of their weaponsat enemies’weaponsif they are particularly
resistantto absorbingdamageto value targets.

Determinationof eachside’s optimal strategyis, in real problemsinvolving
thousandof warheadsand taigetson eachside, a huge computationatask. For
a single warheadwith a high DE againsta weapontarget of the other side, a
choice must be madebetween:

a) firing only a singlewarheadat a target (not “wasting” other warheadson
a tamget that the first warheadis likely to kill) andfiring anotherwarheadat that
targetonly if a subsequentlamageassessmerghowsthe target undestroyedopr

b) firing multiple warheadsitatargetto increaseheprobabilityof destruction,
lest the target go undestroyedn the strike andthen be fired on in animmediate
retaliatory strike.
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Hedging— decidinghow may weapondo usein a first strike andhow manyto
reservefor later strikes— is also important.

In determiningthe beststrategiesof all partiesin a multiple engagementhe
MESA/SM code carriesout a complicatedoptimization basedon geneticalgo-
rithms, in a processsimilar to dynamic programming. Details are beyondthe
scopeof this report but can be found elsewherg/Anson and Stein 1999; Anan-
dalingamand Friesz1992). What can be said, though, is that the deterministic
warheadassumptioris used:the optimal retaliationis computedusing the deter-
ministically calculatednumberof weaponsdestroyedin the first strike, strategy
for the secondengagements determinedassumingthat outcomefor the first
engagementand so on.

To guide the optimization, quantitativemetrics are established. Each side
attemptsto optimizeits own situation,which involvesincurring minimal damage
to its own value assetswvhile achievingits military objectivesin destroyingthe
opponentsvalue assets.The quantity C's aboveis one suchmetric.

In the current MESA/SM implementation,a lengthy iterative algorithm is
carried out to minimize the ultimate cost, from eachside’s standpoint,of its
targeting strategy. Upon computingcostsfor eachside under eachscenarioof
interest(i.e., with eachside assumedo strike first), stability canbe assessed.

Therole of perceptionsn optimizing strategyis abundantlyclear. Eachside
plansits own attackbasedon its perceptions.The two setsof perceptionanay
not bethe same(e.g.,oneside’sintelligenceestimatef the otherside’sdamage
expectancies striking certaintargetsmay not matchthe valuesassumedy the
otherside). Indeed the DEsfor one’sown attackareestimatedasedn somewhat
limited dataand may not be accurateto the 99" decimalplace. Dependingon
the magnitudeof subjectiveuncertaintyin evaluatingDES, therecould be serious
implicationsfor the strategyselected.

4.4 A Simple Tri-polar Example

To illustratethe effect of stochastidoehavioron stability metrics,we consider
a simpletri-polar example.Input parametersre purely notional,in partto avoid
potentialclassificationssueswith usingvaluesthatreflectactualdata. Moreover,
the scopeof the exampleis deliberatelykept small (eachside havingat mosttwo
weapontypes) so as not to introducespuriouscomplications.
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Detailsareasfollows. Threelesserpowersareinvolvedin atri-polar nuclear
exchange,a scenariothat is not beyondthe realm of possibility (for example:
India, PakistanandChina). In the hypotheticalexampleconsideredhere,Side#1
has MIRVed and non-MIRVed missiles,10 of the former (with 10 warheadsper
missile) and 10 of the latter. Side #2 has10 of the former and 40 of the latter,
andSide#3 hasonly 20 non-MIRVED missiles. The numbersof valueassetdor
the threesidesis assumedeffectively infinite relative to the limited arsenals.

The kill probabilities are modestbecauseof an assumptionthat fledgling
nuclearpowersare not as proficientasthe superpowersThosekill probabilities,
for eachwarheadand eachof its potentialtargets, are asfollows:

Targets
Side Side Side Side Side Side Side | Side
#1 #1 #1 #2 #2 #2 #3 #3
MIRVs| non- | Assets MIRVs| Nnon- | Assets non- | Assets
MIRVs MIRVs MIRVS
Side #1 .25 .25 .25 .25 .25
MIRVs
Side #1 .40 .50 .80 .50 .80
non-MIRVs
Side #2 .25 .25 .25 .25 .25
MIRVs
Side #2 40 .50 .80 .50 .80
non-MIRVs
Side #3 40 .50 .80 40 .50 .80
non-MIRVs

In the simulatedbattle,the first engagemenis betweenSides#1 and#2 (Side
#1 launchingfirst and Side #2 thenretaliating),the secondengagemenbetween
Sides#3 and#1 (Side#3launchingdfirst andSide#1 thenretaliating),andthe third
engagemens betweenSides#2 and#3 (Side#2 launchingfirst and Side#3 then
retaliating). The optimalstrategyfor eachsideinvolvesso-callechedgequantities.
Thatis, Side#1 will expendsomeof its weapondn thefirst strike, will thenhave
someweaponsdestroyedin Side #2’s counterattackand will finally expendits
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remainingweaponsin the next engagement. Determiningan effective overall
strategyinvolves using the right portion of its weaponsin the first engagement
and“hedging” therest. Sides#2 and#3 musthedgein their first battlesaswell.

The MESA/SM codeis run to obtain optimal targeting for this example.In
a deterministicframework,eachside believesit knows, basedon the first strike,
exactly how many targets remain. Througha complicatedsearchprocess,the
deterministicwarheadassumptionis propagatedhrougheachstrike of eachen-
gagementConvertingtheresultsto percentagefor usein a stochastisimulation,
the exchangeproceedsasin Table 1.

Note that thereis someatrtificial behaviorin the abovetargetingscheme.In
the first engagementfor example,Side#2 usesthe knowledgethat Side #1 will
not attackit again. Thus,thereis no reasonfor Side #2 to retaliateagainstSide
#1's weapons:thoseweaponswould otherwisebe usedagainstSide #3, thereby
makingit lesslikely thatSide#3’s weaponsvould laterkill Side#2’svalueassets.
Moreover,in eachside’sfinal attackof thewar, it expendsall its weapondecause
thereis no point in savingthem. Also, in the stochasticimplementation,it is
assumedhatsimply proratingthe deterministidargetingstrategygivesreasonable
resultswhenappliedin stochastianodewherethe numberof weaponsemaining
after eachattackis not (exactly) the sameas anticipateddeterministically;the
more appealingapproachof recomputingthe targeting for eachrandomoutcome
is not computationallyfeasible.

Upon propagatinghe deterministicwarheadassumptiorthroughthe succes-
sive engagementghe following value assetsare killed:

Side#1: 2.8 Side#2: 2.6 Side#3: 21.9
Thesevaluesreflect the initial conditions (Sides#1 and #2 startedwith more
weaponsghan Side #3, and thus could destroymore of the other sides’ weapons
beforethoseweaponscould be usedon their own value assets).

It is straightforwardto simulate the abovewar, using randomnumbersto
decidewhethercertaintargets are killed in the first strike, then simulating the
retaliationto the first strike, and so on. Resultsfrom the stochasticsimulation
canthen be comparedto the deterministicresultsabove. Resultsare shownin
Figures1 and 2.
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Table1
Attack Strategyfor HypotheticalExample

First Engagement:
First Attack: Side#1 — Side #2
26% of MIRVs attack Side #2’'s MIRVs
0% of MIRVs attack Side #2's non-MIRVs
10% of MIRVs attack Side #2’s value assets
92% of non-MIRVs attack Side #2’s MIRVs
6% of non-MIRVs attackSide #2’s non-MIRVs
2% of non-MIRVs attackSide #2’s value assets
SecondAttack: Side #2 — Side #1
8% of non-MIRVs attackSide #1’s value assets
100% of MIRVs remainingattack Side#1's value assets
SecondEngagement:
First Attack: Side#3 — Side #1
66% of non-MIRVs attackSide#1’s MIRVSs, if any remain
1% of non-MIRVs attack Side #1's value assets
SecondAttack: Side #1 — Side #3
100% of MIRVs remainingattack Side #3's value assets
Third Engagement:
First Attack: Side#2 — Side #3
35% of non-MIRVs remainingattackSide #3’s non-MIRVs
65% of non-MIRVs remainingattack Side #3's value assets
SecondAttack: Side #3 — Side #2
100% of non-MIRVs remainingattack Side #2's value assets

Apparentin Figure 1 is the stochasticvariability. There,a histogramof the
valueassetdost by Side#1 in thefirst strikeis displayed.Overthe 1000simulated
wars,assetdostrangefrom 1 to 28, in contrasto the deterministicvalue2.8cited
above. In otherwords, the nonlinearitiesare suchthat the expected(stochastic)
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resultis very differentthananticipated andthe variability aroundthat averageas
nonnegligible. This large variability resultsfrom Side #1 allocatingjust enough
warheadsto destroy, under the deterministicwarheadassumption,all of Side
#2's MIRVs. Stochasticallyhowever,one or more of Side#2’'s MIRVs survive
with someprobability, doing substantialdamagein thosecases.Indeed,sucha
stochastidistributionraisesthe notion of stability metricsbasedon probabilistic
outcomes— e.g.,a situationis stableif the probability of onesidedominatingthe
exchanges sufficiently small, or if the rangeof likely outcomesis sufficiently
narrow.

A secondsimulationwas run, reversingthe roles of Sides#1 and#2 in the
first engagemenand using MESA/SM to derive the optimal targeting. In so
doing, force stability can be examined. Similar to the discussionn Section4.2,
considerthe stability metric

A(L1)  A(2,2)
AL2) C A1)

whereA(z, j) denoteghe assetdost by Side: (:=1, 2) whenSide; strikesfirstin
thefirst engagementBasedon the deterministiovarheadassumptionpropagating
throughthe engagementgivestheresultS = (2.8/ 3.5) x (10.2/ 2.6) = 3.1.

Stochastically a histogramof the simulatedvaluesof the stability metric is
displayedin Figure 2. Note the wide rangeof valuesthat is achievable(there
is a lump of probability at S = oo, in that a small fraction of simulatedbattles
yield someA(z,7) = 0). This wide rangeis partly due to using ratios to assess
stability, which tendsto exaggeratehe stochasticeffectsin the assetslestroyed.
In any event,citing the averagevalue of a stability metric with no mentionof its
associatedsariability can give a misleadingpicture.

Severalvariationson the above examplecould be considered. If Side #1
wererisk averse,it could limit the rangeof damageto its value assetdy firing
a greaterportion of its weaponsat its opponents’'weaponsthan in the above
example. Conversely,it could adoptan aggressivestrategy,launchingonly one
warheadat eachof its opponent’'smissilesand hopingto kill all of themin a
very lucky (and unlikely) seriesof events;this would then allow for increased
targeting of value assets.Sucha high risk strategywould lead to a wider range
of outcomesdependingon the degreeof successn the first strike.

S =
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Otheraspectof nuclearexchangegould also be drawninto this discussion.
Damageassessmens importantin a stochasticenvironment(why fire a second
missile when the first has alreadykilled the target?) but not in a deterministic
world (sinceit is known,a priori, whatdamagewill bedone). Strategiesnvolving
damageassessmerttould be quite elaboraterelativeto the oneconsideredabove.
Also, imperfectknowledgeof damageexpectanciessuchaswheneachside must
guessat the effectivenessf the othersides’ weaponsjntroducesanothersource
of uncertainty.

5. Conclusion

Stochasticelementsplay an importantrole in stability assessmentin force
stability, for example,uncertaintyentersin two ways: imperfectknowledgecon-
cerningan adversary’sperformanceparametergsuchas their damageexpectan-
cies) and the randomoutcomesof attacks(determinedby kill probabilitiesp;).
Thesefactorsleadto a situationwherethe gametheoreticpayof is unknownin
advance.

Thereare two main implicationsof the stochasticbehavior. The first is that
an expectedvalue approachproducesmisleadingconclusions. Nonlinearitiesin
the cascadingeffect are such that propagatingexpectedvalue results through
the multiple engagementsloesnot usually lead to valid conclusions.Stochastic
simulationsare requiredto gain a good understandingf the dynamics.

The secondproblemwith deterministicapproachess thatthe rangeof prob-
able outcomess not quantified. As seenin the example,randomvariability can
be large. Strategiexanbe devisedto minimizerisk (thesewould be attractiveto
a sidewhich hasa decidedadvantagen the numberof weapons)r to maximize
risk (which might be attractiveto a side which must take chancesin order to
prevail). As a consequencehe definition of “optimal” strategiess affected,with
obviousimplications for stability.
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